Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2023
    In:  Nature Climate Change Vol. 13, No. 5 ( 2023-05), p. 470-477
    In: Nature Climate Change, Springer Science and Business Media LLC, Vol. 13, No. 5 ( 2023-05), p. 470-477
    Abstract: Zooplankton are the primary energy pathway from phytoplankton to fish. Yet, there is limited understanding about how climate change will modify zooplankton communities and the implications for marine food webs globally. Using a trait-based marine ecosystem model resolving key zooplankton groups, we find that future oceans, particularly in tropical regions, favour food webs increasingly dominated by carnivorous (chaetognaths, jellyfish and carnivorous copepods) and gelatinous filter-feeding zooplankton (larvaceans and salps) at the expense of omnivorous copepods and euphausiids. By providing a direct energetic pathway from small phytoplankton to fish, the rise of gelatinous filter feeders partially offsets the increase in trophic steps between primary producers and fish from declining phytoplankton biomass and increases in carnivorous zooplankton. However, future fish communities experience reduced carrying capacity from falling phytoplankton biomass and less nutritious food as environmental conditions increasingly favour gelatinous zooplankton, slightly exacerbating projected declines in small pelagic fish biomass in tropical regions by 2100.
    Type of Medium: Online Resource
    ISSN: 1758-678X , 1758-6798
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 2603450-5
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages