In:
Scientific Reports, Springer Science and Business Media LLC, Vol. 7, No. 1 ( 2017-05-11)
Kurzfassung:
The alkali-adsorbed graphene nanoribbons exhibit the feature-rich electronic and magnetic properties. From the first-principles calculations, there are only few adatom-dominated conduction bands, and the other conduction and valence bands are caused by carbon atoms. A lot of free electrons are revealed in the occupied alkali- and carbon-dependent conduction bands. Energy bands are sensitive to the concentration, distribution and kind of adatom and the edge structure, while the total linear free carrier density only relies on the first one. These mainly arise from a single s − 2 p z orbital hybridization in the adatom-carbon bond. Specifically, zigzag systems can present the anti-ferromagnetic ordering across two edges, ferromagnetic ordering along one edge and non-magnetism, being reflected in the edge-localized energy bands with or without spin splitting. The diverse energy dispersions contribute many special peaks in density of states. The critical chemical bonding and the distinct spin configuration could be verified from the experimental measurements.
Materialart:
Online-Ressource
ISSN:
2045-2322
DOI:
10.1038/s41598-017-01688-2
Sprache:
Englisch
Verlag:
Springer Science and Business Media LLC
Publikationsdatum:
2017
ZDB Id:
2615211-3