Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2020
    In:  Scientific Reports Vol. 10, No. 1 ( 2020-09-15)
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 10, No. 1 ( 2020-09-15)
    Abstract: High-intensity X-ray sources are essential diagnostic tools for science, technology and medicine. Such X-ray sources can be produced in laser-plasma accelerators, where electrons emit short-wavelength radiation due to their betatron oscillations in the plasma wake of a laser pulse. Contemporary available betatron radiation X-ray sources can deliver a collimated X-ray pulse of duration on the order of several femtoseconds from a source size of the order of several micrometres. In this paper we demonstrate, through particle-in-cell simulations, that the temporal resolution of such a source can be enhanced by an order of magnitude by a spatial modulation of the emitting relativistic electron bunch. The modulation is achieved by the interaction of the that electron bunch with a co-propagating laser beam which results in the generation of a train of equidistant sub-femtosecond X-ray pulses. The distance between the single pulses of a train is tuned by the wavelength of the modulation laser pulse. The modelled experimental setup is achievable with current technologies. Potential applications include stroboscopic sampling of ultrafast fundamental processes.
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 2615211-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages