Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2020
    In:  Scientific Reports Vol. 10, No. 1 ( 2020-10-22)
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 10, No. 1 ( 2020-10-22)
    Abstract: Molecular dynamics (MD) simulation is used to analyze the mechanical properties of polymerized and nanoscale filled rubber. Unfortunately, the computation time for a simulation can require several months’ computing power, because the interactions of thousands of filler particles must be calculated. To alleviate this problem, we introduce a surrogate convolutional neural network model to achieve faster and more accurate predictions. The major difficulty when employing machine-learning-based surrogate models is the shortage of training data, contributing to the huge simulation costs. To derive a highly accurate surrogate model using only a small amount of training data, we increase the number of training instances by dividing the large-scale simulation results into 3D images of middle-scale filler morphologies and corresponding regional stresses. The images include fringe regions to reflect the influence of the filler constituents outside the core regions. The resultant surrogate model provides higher prediction accuracy than that trained only by images of the entire region. Afterwards, we extract the fillers that dominate the mechanical properties using the surrogate model and we confirm their validity using MD.
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 2615211-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages