Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2020
    In:  Scientific Reports Vol. 10, No. 1 ( 2020-12-01)
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 10, No. 1 ( 2020-12-01)
    Abstract: Genetic evidence of disease association has often been used as a basis for selecting of drug targets for complex common diseases. Likewise, the propagation of genetic evidence through gene or protein interaction networks has been shown to accurately infer novel disease associations at genes for which no direct genetic evidence can be observed. However, an empirical test of the utility of combining these approaches for drug discovery has been lacking. In this study, we examine genetic associations arising from an analysis of 648 UK Biobank GWAS and evaluate whether targets identified as proxies of direct genetic hits are enriched for successful drug targets, as measured by historical clinical trial data. We find that protein networks formed from specific functional linkages such as protein complexes and ligand–receptor pairs are suitable for even naïve guilt-by-association network propagation approaches. In addition, more sophisticated approaches applied to global protein–protein interaction networks and pathway databases, also successfully retrieve targets enriched for clinically successful drug targets. We conclude that network propagation of genetic evidence can be used for drug target identification.
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 2615211-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages