In:
Scientific Reports, Springer Science and Business Media LLC, Vol. 12, No. 1 ( 2022-10-12)
Kurzfassung:
To improve the performance of data-driven reaction prediction models, we propose an intelligent strategy for predicting reaction products using available data and increasing the sample size using fake data augmentation. In this research, fake data sets were created and augmented with raw data for constructing virtual training models. Fake reaction datasets were created by replacing some functional groups, i.e., in the data analysis strategy, the fake data as compounds with modified functional groups to increase the amount of data for reaction prediction. This approach was tested on five different reactions, and the results show improvements over other relevant techniques with increased model predictivity. Furthermore, we evaluated this method in different models, confirming the generality of virtual data augmentation. In summary, virtual data augmentation can be used as an effective measure to solve the problem of insufficient data and significantly improve the performance of reaction prediction.
Materialart:
Online-Ressource
ISSN:
2045-2322
DOI:
10.1038/s41598-022-21524-6
Sprache:
Englisch
Verlag:
Springer Science and Business Media LLC
Publikationsdatum:
2022
ZDB Id:
2615211-3