Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 13, No. 1 ( 2023-08-15)
    Abstract: Interstitial fibrosis assessment by renal pathologists lacks good agreement, and we aimed to investigate its hidden properties and infer possible clinical impact. Fifty kidney biopsies were assessed by 9 renal pathologists and evaluated by intraclass correlation coefficients (ICCs) and kappa statistics. Probabilities of pathologists’ assessments that would deviate far from true values were derived from quadratic regression and multilayer perceptron nonlinear regression. Likely causes of variation in interstitial fibrosis assessment were investigated. Possible misclassification rates were inferred on reported large cohorts. We found inter-rater reliabilities ranged from poor to good (ICCs 0.48 to 0.90), and pathologists’ assessments had the worst agreements when the extent of interstitial fibrosis was moderate. 33.5% of pathologists’ assessments were expected to deviate far from the true values. Variation in interstitial fibrosis assessment was found to be correlated with variation in interstitial inflammation assessment (r 2  = 32.1%). Taking IgA nephropathy as an example, the Oxford T scores for interstitial fibrosis were expected to be misclassified in 21.9% of patients. This study demonstrated the complexity of the inter-rater reliability of interstitial fibrosis assessment, and our proposed approaches discovered previously unknown properties in pathologists’ practice and inferred a possible clinical impact on patients.
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 2615211-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages