In:
Scientific Reports, Springer Science and Business Media LLC, Vol. 5, No. 1 ( 2015-05-15)
Kurzfassung:
Modulation of resistance by an external magnetic field, i.e. magnetoresistance effect, has been a long-lived theme of research due to both fundamental science and device applications. Here we report colossal positive magnetoresistance (CPMR) ( 〉 30,000% at a temperature of 2 K and a magnetic field of 9 T) discovered in degenerate semiconducting strontium titanite (SrTiO 3 ) single crystals capped with ultrathin SrTiO 3 /LaAlO 3 bilayers. The low-pressure high-temperature homoepitaxial growth of several unit cells of SrTiO 3 introduces oxygen vacancies and high-mobility carriers in the bulk SrTiO 3 and the three-unit-cell LaAlO 3 capping layer passivates the surface and improves carrier mobility by suppressing surface-defect-related scattering. The coexistence of multiple types of carriers and inhomogeneous transport lead to the emergence of CPMR. This unit-cell-level surface engineering approach is promising to be generalized to others oxides and to realize devices with high-mobility carriers and interesting magnetoelectronic properties.
Materialart:
Online-Ressource
ISSN:
2045-2322
Sprache:
Englisch
Verlag:
Springer Science and Business Media LLC
Publikationsdatum:
2015
ZDB Id:
2615211-3