Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 7, No. 1 ( 2017-02-07)
    Abstract: Common medical imaging techniques usually employ contrast agents that are chemically labeled, e.g. with radioisotopes in the case of PET, iodine in the case of CT or paramagnetic metals in the case of MRI to visualize the heterogeneity of the tumor microenvironment. Recently, it was shown that natural unlabeled D-glucose can be used as a nontoxic biodegradable contrast agent in Chemical Exchange sensitive Spin-Lock (CESL) magnetic resonance imaging (MRI) to detect the glucose uptake and potentially the metabolism of tumors. As an important step to fulfill the clinical needs for practicability, reproducibility and imaging speed we present here a robust and quantitative T 1ρ -weighted technique for dynamic glucose enhanced MRI (DGE-MRI) with a temporal resolution of less than 7 seconds. Applied to a brain tumor patient, the new technique provided a distinct DGE contrast between tumor and healthy brain tissue and showed the detailed dynamics of the glucose enhancement after intravenous injection. Development of this fast and quantitative DGE-MRI technique allows for a more detailed analysis of DGE correlations in the future and potentially enables non-invasive diagnosis, staging and monitoring of tumor response to therapy.
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2017
    detail.hit.zdb_id: 2615211-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages