Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    Royal Society of Chemistry (RSC) ; 2022
    In:  Physical Chemistry Chemical Physics Vol. 24, No. 17 ( 2022), p. 10280-10291
    In: Physical Chemistry Chemical Physics, Royal Society of Chemistry (RSC), Vol. 24, No. 17 ( 2022), p. 10280-10291
    Kurzfassung: While state-of-art models can predict reactions through the transfer learning of thousands of samples with the same reaction types as those of the reactions to predict, how to prepare such models to predict “unseen” reactions remains an unanswered question. We aimed to study the Transformer model's ability to predict “unseen” reactions through “zero-shot reaction prediction (ZSRP)”, a concept derived from zero-shot learning and zero-shot translation. We reproduced the human invention of the Chan–Lam coupling reaction where the inventor was inspired by the Suzuki reaction when improving Barton's bismuth arylation reaction. After being fine-tuned with samples from these two “existing” reactions, the USPTO-trained Transformer could predict “unseen” Chan–Lam coupling reactions with 55.7% top-1 accuracy. Our model could also mimic the later stage of the history of this reaction, where the initial case of this reaction was generalized to more reactants and reagents via “one-shot/few-shot reaction prediction (OSRP/FSRP)” approaches.
    Materialart: Online-Ressource
    ISSN: 1463-9076 , 1463-9084
    Sprache: Englisch
    Verlag: Royal Society of Chemistry (RSC)
    Publikationsdatum: 2022
    ZDB Id: 1476283-3
    ZDB Id: 1476244-4
    ZDB Id: 1460656-2
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz