In:
Energy & Environmental Science, Royal Society of Chemistry (RSC), Vol. 15, No. 1 ( 2022), p. 234-243
Abstract:
The electrosynthesis of valuable chemicals via carbon dioxide reduction reaction (CO 2 RR) has provided a promising way to address global energy and sustainability problems. However, the selectivity and activity of deep-reduction products (DRPs) still remain as big challenges. Here, a copper–carbon-based catalyst with a hydrophobic core–shell architecture has been constructed and was found to exhibit excellent DRPs of methane generation with a faradaic efficiency of 81 ± 3% in a neutral medium and a maximum partial current density of −434 mA cm −2 in a flow cell configuration, which is among the best of CO 2 -to-CH 4 electrocatalysts. Density functional theory calculations suggest that the hydrophobic structure decreasing the water coverage on the catalyst surface can promote the protonation of the *CO intermediate and block CO production, further favoring the generation of methane. These results provide a new insight into the electrosynthesis of DRPs via constructing a hydrophobic core–shell architecture for tuning the surface water coverage.
Type of Medium:
Online Resource
ISSN:
1754-5692
,
1754-5706
Language:
English
Publisher:
Royal Society of Chemistry (RSC)
Publication Date:
2022
detail.hit.zdb_id:
2439879-2