Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Royal Society of Chemistry (RSC) ; 2021
    In:  Soft Matter Vol. 17, No. 44 ( 2021), p. 10005-10015
    In: Soft Matter, Royal Society of Chemistry (RSC), Vol. 17, No. 44 ( 2021), p. 10005-10015
    Abstract: Anisotropic crack patterns emerging in desiccating layers of pastes on a substrate can be exploited for controlled cracking with potential applications in microelectronic manufacturing. We investigate such possibilities of crack patterning in the framework of a discrete element model focusing on the temporal and spatial evolution of anisotropic crack patterns as a thin material layer gradually shrinks. In the model a homogeneous material is considered with an inherent structural disorder where anisotropy is captured by the directional dependence of the local cohesive strength. We demonstrate that there exists a threshold anisotropy below which crack initiation and propagation is determined by the disordered micro-structure, giving rise to cellular crack patterns. When the strength of anisotropy is sufficiently high, cracking is found to evolve through three distinct phases of aligned cracking which slices the sample, secondary cracking in the perpendicular direction, and finally binary fragmentation following the formation of a connected crack network. The anisotropic crack pattern results in fragments with a shape anisotropy which gradually gets reduced as binary fragmentation proceeds. The statistics of fragment masses exhibits a high degree of robustness described by a log-normal functional form at all anisotropies.
    Type of Medium: Online Resource
    ISSN: 1744-683X , 1744-6848
    Language: English
    Publisher: Royal Society of Chemistry (RSC)
    Publication Date: 2021
    detail.hit.zdb_id: 2191476-X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages