Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Journal of Materials Chemistry C, Royal Society of Chemistry (RSC), Vol. 10, No. 10 ( 2022), p. 3819-3825
    Abstract: Measurement of the properties of magnetic nanoparticles is mandatory for their application and usually this is accomplished using magnetometers, like SQUIDs or VSMs. However, these techniques require amounts of materials that are not always available and do not allow exploration of new syntheses with low production. The tiny quantity of nanoparticles obtained by laser ablation of strontium ferrite necessitated the characterization of their magnetic properties using an alternative technique, optically detected magnetophoresis, which exploits the motion of nanoparticles in a fluid under a magnetic field gradient. Time dependent optical extinction of a colloidal solution of magnetic nanoparticles can be used for recording the collective motion of the nanoparticles in a fluid. The optical extinction of nanoparticles, with absorption and scattering contributions, depends on the particle material and on their morphologies. We report a new implementation of a magnetophoretic model with the extinction properties of nanoparticles calculated using the Boundary Element Method. The model is applied to estimate the magnetic properties of a challenging sample of mixed ferrite nanoparticles. The results show that, especially for polydisperse samples, the explicit consideration of the size dependent extinction properties of the nanoparticles is needed to characterize magnetic nanoparticles by optically detected magnetophoresis. The motion of magnetic nanoparticles in a fluid, exploited in many applications, is provided with an appropriate description using the present approach.
    Type of Medium: Online Resource
    ISSN: 2050-7526 , 2050-7534
    Language: English
    Publisher: Royal Society of Chemistry (RSC)
    Publication Date: 2022
    detail.hit.zdb_id: 2702245-6
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages