Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Royal Society of Chemistry (RSC) ; 2023
    In:  Physical Chemistry Chemical Physics Vol. 25, No. 5 ( 2023), p. 3745-3751
    In: Physical Chemistry Chemical Physics, Royal Society of Chemistry (RSC), Vol. 25, No. 5 ( 2023), p. 3745-3751
    Abstract: Anisotropy in a crystal structure plays a striking role in determining the optical, electrical and thermal properties of the condensed matter. Here, we investigated in-plane vibrational anisotropy in a two-dimensional (2D) van der Waals (vdW)-layered GeAs narrow-gap semiconductor by combining microstructural characterization and polarization Raman spectroscopy. Interestingly, not only the intensities but also the Raman shifts in all modes evolved periodically with different symmetries as the polarization angle changed continuously, which could be well-analyzed using the Raman tensors and further interpreted from the phonon dispersion relations. More importantly, the temperature-dependent Raman intensities of the Raman modes in the range from 83 K to 823 K gave a thermal-related uniform constant, based on which key parameters, including the thermal expansion coefficient, Grüneisen constant and quasi-particle lifetime, could be directly derived, which were in line with the calculated predictions. This investigation provides a comprehensive understanding of structure-dependent optical anisotropy in 2D vdW-layered GeAs and suggests a new idea for exploring the thermal properties of related materials using temperature-dependent Raman spectroscopy.
    Type of Medium: Online Resource
    ISSN: 1463-9076 , 1463-9084
    Language: English
    Publisher: Royal Society of Chemistry (RSC)
    Publication Date: 2023
    detail.hit.zdb_id: 1476283-3
    detail.hit.zdb_id: 1476244-4
    detail.hit.zdb_id: 1460656-2
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages