Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Dalton Transactions, Royal Society of Chemistry (RSC), Vol. 52, No. 6 ( 2023), p. 1687-1701
    Abstract: Ferrous and sulfur ions are essential elements for the human body, which play an active role in maintaining the body's normal physiology. Meanwhile, mussel-inspired polydopamine (PDA) possesses good hydrophilicity and biocompatibility. In the present work, ferrous sulfide embedded into polydopamine nanoparticles (PDA@FeS NPs) was designed and synthesized via a simple predoping polymerization–coprecipitation strategy and the intelligent PDA matrix successfully prevented the oxidation and agglomeration of FeS nanoparticles. Importantly, there was an obvious synergistic enhancement of the photothermal effect between polydopamine and ferrous sulfide. The PDA@FeS NPs exhibited excellent photothermal antibacterial effects against both E. coli and S. aureus . The near-infrared (NIR) light-mediated release of ferrous ions could reach about 26.5% under weakly acidic conditions, further triggering the Fenton reaction to produce toxic hydroxyl radicals (·OH) in the presence of hydrogen peroxide. The antibacterial mechanism could be attributed to cell membrane damage and cellular content leakage with the synergistic effect of PTT and CDT. This study highlighted the germicidal efficacy of PDA@FeS NPs and provided a new strategy for designing and developing next-generation antibacterial platforms.
    Type of Medium: Online Resource
    ISSN: 1477-9226 , 1477-9234
    Language: English
    Publisher: Royal Society of Chemistry (RSC)
    Publication Date: 2023
    detail.hit.zdb_id: 1472887-4
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages