Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Royal Society of Chemistry (RSC) ; 2022
    In:  Materials Horizons Vol. 9, No. 11 ( 2022), p. 2835-2845
    In: Materials Horizons, Royal Society of Chemistry (RSC), Vol. 9, No. 11 ( 2022), p. 2835-2845
    Abstract: Mechanical metamaterials are of great interest due to their counterintuitive deformation under various physical fields. However, the research on metamaterials responding to moisture is still rare and controllable hygroscopic deformation is vital for sensoring, actuating, and stress elimination in a moisture environment. Inspired by the hygroscopic deformation of pinecones, this work studies 2D moisture-sensitive mechanical metamaterials exploiting bi-material curved strips as building blocks by simulations and experiments, which especially demonstrates repeatable programming ability to realize customized unusual hygroscopic deformations. Depending on the structural design of geometrical parameters and material configurations, the metamaterials exhibit a tunable coefficient of hygroscopic expansion from negative to positive, and unusual hygroscopic deformation modes including anisotropic, shearing, gradient, bending, and 3D deformation of 2D structures. Programmable metamaterials of arbitrary hygroscopic deformation are achieved by pixelated design and coding the building blocks. More importantly, the hygroscopic deformation is re-programmable by adopting erasable moisture-proof coatings on specific areas of metamaterials, i.e. , it can continuously provide different customized deformation modes in a sample.
    Type of Medium: Online Resource
    ISSN: 2051-6347 , 2051-6355
    Language: English
    Publisher: Royal Society of Chemistry (RSC)
    Publication Date: 2022
    detail.hit.zdb_id: 2744250-0
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages