Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Royal Society of Chemistry (RSC) ; 2023
    In:  Energy & Environmental Science Vol. 16, No. 10 ( 2023), p. 4191-4250
    In: Energy & Environmental Science, Royal Society of Chemistry (RSC), Vol. 16, No. 10 ( 2023), p. 4191-4250
    Abstract: With the rapid development of wearable electronics, flexible energy storage devices that can power them are quickly emerging. Among multitudinous energy storage technologies, flexible batteries have gained significant attention, benefiting from high energy density and long cycling life. An ideal flexible battery requires superior electrochemical performance and excellent mechanical deformability. MXenes, 2D transition metal carbides, nitrides, and carbonitrides show substantial encouraging advances due to their unique properties, including excellent mechanical performance, high electrical conductivity, abundant surface chemistries, and convenient processability. Related reports of MXenes in flexible batteries have keenly increased since 2021. However, systematic reviews on this subject are rare. Herein, the latest progresses of MXene-based materials in flexible energy storage devices are comprehensively reviewed. Firstly, the fundamental principles of flexible MXenes, such as types, synthesis methods, and competitive features, are introduced. Subsequently, the design strategies and internal mechanisms of MXene-based materials in flexible metal batteries and metal-ion/oxygen/sulfur/selenium batteries (metal = Li, Na, K, Zn, Mg, Fe, etc .) as electrode, matrix, current collector, interlayer, and binder are comprehensively introduced. At the end of the review, the current trends, limitations, and future outlooks of MXene-based materials in flexible batteries are proposed.
    Type of Medium: Online Resource
    ISSN: 1754-5692 , 1754-5706
    Language: English
    Publisher: Royal Society of Chemistry (RSC)
    Publication Date: 2023
    detail.hit.zdb_id: 2439879-2
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages