Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    Royal Society of Chemistry (RSC) ; 2023
    In:  Nanoscale Vol. 15, No. 26 ( 2023), p. 11155-11162
    In: Nanoscale, Royal Society of Chemistry (RSC), Vol. 15, No. 26 ( 2023), p. 11155-11162
    Kurzfassung: Polaritons – material excitation coupled with light – are thought to hold the potential for the extreme control of light down to the atomic length scale because of their high field confinement and sub-wavelength scales. For practical applications, it is essential but still a formidable challenge to manipulate polaritons with high efficiency and a wide tunable range. These obstacles may be overcome by the topology of polaritons. In photonic systems composed of graphene/α-MoO 3 heterostructures, the topology of the hybrid polariton characterized by the isofrequency curve can transform from open hyperbolas to closed ellipse-like curves, driven by the carrier concentrations of graphene. The electronic tunability of such topological polaritons offers a unique platform for two-dimensional energy transfer. Here, by introducing local gates to obtain a tunable spatial carrier density profile in the graphene/α-MoO 3 heterostructure, the phase of the polariton is predicted to be efficiently tuned from 0 to 2π in situ . Remarkably, the reflectance and transmittance through the gap between local gates can also be modulated in situ from 0 to 1 with high efficiency, where the device length can be less than 100 nm. The modulation is achieved owing to the dramatic changes in the wave vector of polaritons near the topological transition point. The proposed structures not only have direct applications in two-dimensional optics such as total reflectors, phase (amplitude) modulators, and optical switches but also can serve as an important component for complex nano-optical devices.
    Materialart: Online-Ressource
    ISSN: 2040-3364 , 2040-3372
    Sprache: Englisch
    Verlag: Royal Society of Chemistry (RSC)
    Publikationsdatum: 2023
    ZDB Id: 2515664-0
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz