Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Royal Society of Chemistry (RSC) ; 2023
    In:  Journal of Materials Chemistry A Vol. 11, No. 26 ( 2023), p. 14416-14423
    In: Journal of Materials Chemistry A, Royal Society of Chemistry (RSC), Vol. 11, No. 26 ( 2023), p. 14416-14423
    Abstract: While air safety issues caused by indoor decoration have received extensive attention, real-time monitoring of toxic gases is still a severe technical challenge. Therefore, a xylene and formaldehyde dual gas sensor with easy operation and high stability is proposed in this study. Herein, a NiO–MXene heterostructure was constructed by recombining NiO nanoparticles with a two dimensional layered material Ti 3 C 2 T x MXene by in situ precipitation. The results revealed that the NiO–MXene based sensors not only showed good responses to xylene at room temperature, but also showed 5.36 times higher response than that of the pure NiO based sensor to 100 ppm formaldehyde at 170 °C. It also showed good repeatability and long-term stability. The formation of a hybrid heterojunction by single-layered MXene nanosheets combined with a p-type semiconductor NiO is an essential factor for the enhanced gas sensing performance. This work is of significance for the preparation of dual or multiple gas sensors, and has an application potential in ensuring the safety of the indoor environment.
    Type of Medium: Online Resource
    ISSN: 2050-7488 , 2050-7496
    Language: English
    Publisher: Royal Society of Chemistry (RSC)
    Publication Date: 2023
    detail.hit.zdb_id: 2702232-8
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages