In:
Bioscience Reports, Portland Press Ltd., Vol. 38, No. 4 ( 2018-08-31)
Abstract:
To prevent implant failure due to fibrosis is a major objective in glaucoma research. The present study investigated the antifibrotic effects of paclitaxel (PTX), caffeic acid phenethyl ester (CAPE), and pirfenidone (PFD) coated microstent test specimens in a rat model. Test specimens based on a biodegradable blend of poly(4-hydroxybutyrate) biopolymer and atactic poly(3-hydroxybutyrate) (at.P(3HB)) were manufactured, equipped with local drug delivery (LDD) coatings, and implanted in the subcutaneous white fat depot. Postoperatively, test specimens were explanted and analyzed for residual drug content. Fat depots including the test specimens were histologically analyzed. In vitro drug release studies revealed an initial burst for LDD devices. In vivo, slow drug release of PTX was found, whereas it already completed 1 week postoperatively for CAPE and PFD LDD devices. Histological examinations revealed a massive cell infiltration in the periphery of the test specimens. Compact fibrotic capsules around the LDD devices were detectable at 4–36 weeks and least pronounced around PFD-coated specimens. Capsules stained positive for extracellular matrix (ECM) components. The presented model offers possibilities to investigate release kinetics and the antifibrotic potential of drugs in vivo as well as the identification of more effective agents for a novel generation of drug-eluting glaucoma microstents.
Type of Medium:
Online Resource
ISSN:
0144-8463
,
1573-4935
Language:
English
Publisher:
Portland Press Ltd.
Publication Date:
2018
detail.hit.zdb_id:
2014993-1
SSG:
12