Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Bioscience Reports, Portland Press Ltd., Vol. 39, No. 11 ( 2019-11-29)
    Abstract: Purpose: In the degenerated intervertebral disc (IVD), matrix acidity challenges transplanted bone marrow mesenchymal stem cells (BMSCs). The Ca2+-permeable acid-sensing ion channel 1a (ASIC1a) is responsible for acidosis-mediated tissue injury. The aim of our study was to confirm whether ASIC1a activation induces BMSC apoptosis under conditions that mimic the acidic microenvironment of the degenerated IVD. Methods: ASIC1a expression in rat BMSCs was investigated by real time-PCR, Western blot (WB) and immunofluorescence. The proliferation and apoptosis of BMSCs under acidic conditions were analyzed by MTT and TUNEL assays. Ca2+-imaging was used to assess the acid-induced increase in the intracellular Ca2+ concentration ([Ca2+]i). The activation of calpain and calcineurin was analyzed using specific kits, and WB analysis was performed to detect apoptosis-related proteins. Ultrastructural changes in BMSCs were observed using transmission electron microscopy (TEM). Results: Acid exposure led to the activation of ASIC1a and increased BMSC apoptosis. The Ca2+ imaging assay showed a significant increase in the [Ca2+]i in response to a solution at pH 6.0. However, BMSC apoptosis and [Ca2+] i elevation were alleviated in the presence of an ASIC1a inhibitor. Moreover, ASIC1a mediated the Ca2+ influx-induced activation of calpain and calcineurin in BMSCs. WB analysis and TEM revealed mitochondrial apoptosis, which was inhibited by an ASIC1a inhibitor, in BMSCs under acidic conditions. Conclusions: The mimical acidic microenvironment of the degenerated IVD can induce BMSC apoptosis by activating Ca2+-permeable ASIC1a. An acid-induced elevation of [Ca2+]i in BMSCs leads to the subsequent activation of calpain and calcineurin, further resulting in increased mitochondrial permeability and mitochondrial-mediated apoptosis.
    Type of Medium: Online Resource
    ISSN: 0144-8463 , 1573-4935
    Language: English
    Publisher: Portland Press Ltd.
    Publication Date: 2019
    detail.hit.zdb_id: 2014993-1
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages