Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Portland Press Ltd. ; 1999
    In:  Biochemical Journal Vol. 341, No. 3 ( 1999-08-01), p. 733-737
    In: Biochemical Journal, Portland Press Ltd., Vol. 341, No. 3 ( 1999-08-01), p. 733-737
    Abstract: A galactose-binding lectin isolated from the venom of Trimeresurus stejnegeri is a homodimer C-type lectin. The cloned cDNA encoding the monomer of Trimeresurus stejnegerilectin (TSL) was sequenced and found to contain a 5′-end non-coding region, a sequence which encodes 135 amino acids, including a typical 23 amino acid signal peptide followed by the mature protein sequence, a 3′-end non-coding region, a polyadenylation signal, and a poly(A) region. To completely characterize the deduced amino acid sequence, on-line HPLC-MS and tandem MS were used to analyse the intact monomer and its proteolytic peptides. A modified peptide fragment was also putatively identified by HPLC-MS analysis. The deduced amino acid sequence was found to contain a carbohydrate-recognition domain homologous with those of some known C-type animal lectins. Thus TSL belongs to group VII of the C-type animal lectins as classified by Drickamer [(1993) Prog. Nucleic Acid Res. Mol. Biol. 45, 207-232]. At present, a number of C-type lectins have been purified from snake venom, but most of them have been characterized only at the protein level. To our knowledge, this is the first known cDNA sequence of a true C-type lectin from snake venom.
    Type of Medium: Online Resource
    ISSN: 0264-6021 , 1470-8728
    RVK:
    Language: English
    Publisher: Portland Press Ltd.
    Publication Date: 1999
    detail.hit.zdb_id: 1473095-9
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages