Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Portland Press Ltd. ; 2002
    In:  Biochemical Journal Vol. 364, No. 1 ( 2002-05-15), p. 275-284
    In: Biochemical Journal, Portland Press Ltd., Vol. 364, No. 1 ( 2002-05-15), p. 275-284
    Abstract: In cultured hepatocytes the turnover of several mitochondrial matrix proteins (e.g. acetyl-CoA acetyltransferase) appears to be initiated by CoA-mediated, sequential transformation into CoA-modified forms. This modification favours the notion that intramitochondrial degradation by a matrix-resident ATP-dependent protease may be preceded by a specific modification by CoA. In a mitochondrial matrix fraction the MgATP-dependent decrease in anti-CoA immunoreactivity coincided with both a decrease in the anti-protein immunoreactivity of acetyl-CoA acetyltransferase and/or of 3-ketoacyl-CoA thiolase, and with the appearance of proteolytic fragments. A closer analysis of the degradation pattern revealed, however, a breakdown of the unmodified acetyl-CoA acetyltransferase and of its CoA-modified form, A1, whereas the form that is more highly modified by CoA, A2, proved to be inaccessible towards an ATP-dependent protease. In mammalian mitochondrial matrix, proteins can be degraded selectively by a matrix-resident ATP-dependent protease. The process of CoA modification results finally in the protection of matrix proteins from degradation. In cultured hepatocytes, leupeptin, an inhibitor of lysosomal proteases, did not affect the steady-state level of the mitochondrial matrix protein acetyl-CoA acetyltransferase. However, leupeptin mediated a specific accumulation of mitochondrial matrix proteins in the cytosolic fractions of hepatocytes cultured over a 24h period. The levels of acetyl-CoA acetyltransferase, 3-ketoacyl-CoA thiolase and glutamate dehydrogenase proteins increased 1.9-, 2.0- and 2.2-fold respectively. Their status as mature, oligomeric, but enzymically inactive enzymes strongly suggests that they originate from a leakage of autophagosomes, a constituent of the non-selective autophagic/lysosomal pathway for degradation of whole mitochondria.
    Type of Medium: Online Resource
    ISSN: 0264-6021 , 1470-8728
    RVK:
    Language: English
    Publisher: Portland Press Ltd.
    Publication Date: 2002
    detail.hit.zdb_id: 1473095-9
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages