Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 673 ( 2023-5), p. A37-
    Abstract: Aims . We aim to constrain the origin of the non-detection of the metastable He  I triplet at ≈10 830 Å obtained for the hot Jupiter WASP-80b. Methods . We measure the X-ray flux of WASP-80 from archival observations and use it as input to scaling relations accounting for the coronal [Fe/O] abundance ratio in order to infer the extreme-ultraviolet (EUV) flux in the 200–504 Å range, which controls the formation of metastable He  I . We run three-dimensional (magneto) hydrodynamic simulations of the expanding planetary upper atmosphere interacting with the stellar wind to study the impact on the He  I absorption of the stellar high-energy emission, the He/H abundance ratio, the stellar wind, and the possible presence of a planetary magnetic field up to 1 G. Results . For low-stellar-EUV emission, which is favoured by the measured log R ′ HK value, the He  I non-detection can be explained by a solar He/H abundance ratio in combination with a strong stellar wind, by a subsolar He/H abundance ratio, or by a combination of the two. For a high stellar EUV emission, the non-detection implies a subsolar He/H abundance ratio. A planetary magnetic field is unlikely to be the cause of the non-detection. Conclusions . The low-EUV stellar flux driven by the low [Fe/O] coronal abundance is the likely primary cause of the He  I non-detection. High-quality EUV spectra of nearby stars are urgently needed to improve the accuracy of high-energy emission estimates, which would then enable the employment of observations to constrain the planetary He/H abundance ratio and the stellar wind strength. This would greatly enhance the information that can be extracted from He  I atmospheric characterisation observations.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2023
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages