Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: E3S Web of Conferences, EDP Sciences, Vol. 40 ( 2018), p. 03029-
    Abstract: The highly turbulent flow induced by ship propellers has a great potential to scour the alluvial bottom of navigational rivers and canals. Characterization of the complex flow field behind propellers is essential for forecasting the scouring action. In this study the velocity field and scour induced by two standard arrangements of propeller, nozzle and rudder from inland vessels are investigated experimentally with a ship model on a scale of 1:16. There are two objectives: first, to identify the influence of the ship stern on the flow field, and second, to assess induced scour depths in relation to maximum current velocities close to the bottom. It is found that the equilibrium scour depths for the two propeller arrangements are of the same order of magnitude, but that the time development of scour is different. The differences can be explained by the converging trend of the flow velocities at the bottom level for the two situations, when the vertical distance between the propeller and the bottom is high. It is also shown that existing relations for the velocity field require amendment when the propeller is ducted, and for adequately considering the effect of the ship stern and rudder type.
    Type of Medium: Online Resource
    ISSN: 2267-1242
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2018
    detail.hit.zdb_id: 2755680-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages