Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    EDP Sciences ; 2019
    In:  EPJ Web of Conferences Vol. 213 ( 2019), p. 02001-
    In: EPJ Web of Conferences, EDP Sciences, Vol. 213 ( 2019), p. 02001-
    Abstract: Industrial air curtains are used to prevent air from moving from one space to another space or to environment. The most common used type is downward-facing blower fan mounted over the entrance of a building, or an opening door between two spaces conditioned at different temperatures. In many factories and industrial buildings, heating or cooling applications are difficult due to the huge doors. These huge doors cause heat loses with convection phenomena of the inside air. In this study an air curtain having heater unit is analyzed numerically by CFD. The height of the air curtain from the bottom side is vary between 2.5 m, 3 m, 4m, 5m and 6 m mounted over the entrance door of the conditioned volume. For CFD studies proper mesh structure is created on the flow domain and Shear Stress Transport (SST) k-omega models were used in Unsteady Reynolds Averaged Navier-Stokes (URANS) computations. The blowing temperature of the air curtain has adjusted to 60 °C with the inside temperature was aimed to kept at +7°C while the outside temperature was -5°C. It is found that there is less flow occurred to the environment from conditioned volume at 2.5 3, 4 and 5 meter height cases. In these cases, the air curtain also contributes the heating of the conditioned room. But some ratio of the air flows through the atmosphere and the room cannot kept at the +7°C initial temperature at 6 m case. It is also found that the heating ratio at different blowing heights differs between 0,89-1,98 comparing the case without an air curtain.
    Type of Medium: Online Resource
    ISSN: 2100-014X
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2019
    detail.hit.zdb_id: 2595425-8
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages