Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: The Journal of Chemical Physics, AIP Publishing, Vol. 119, No. 2 ( 2003-07-08), p. 701-712
    Abstract: A new method for relativistically corrected nuclear magnetic resonance (NMR) chemical shifts is developed by combining the individual gauge for the localized orbital approach for density functional theory with the normalized elimination of a small component using an effective potential. The new method is used for the calculation of the NMR chemical shifts of Mo95 and W183 in various molybdenum and tungsten compounds. It is shown that quasirelativistic corrections lead to an average improvement of calculated NMR chemical shift values by 300 and 120 ppm in the case of Mo95 and W183, respectively, which is mainly due to improvements in the paramagnetic contributions. The relationship between electronic structure of a molecule and the relativistic paramagnetic corrections is discussed. Relativistic effects for the diamagnetic part of the magnetic shielding caused by a relativistic contraction of the s,p orbitals in the core region concern only the shielding values, however, have little consequence for the shift values because of the large independence from electronic structure and a cancellation of these effects in the shift values. It is shown that the relativistic corrections can be improved by level shift operators and a B3LYP hybrid functional, for which Hartree–Fock exchange is reduced to 15%.
    Type of Medium: Online Resource
    ISSN: 0021-9606 , 1089-7690
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2003
    detail.hit.zdb_id: 3113-6
    detail.hit.zdb_id: 1473050-9
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages