Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    AIP Publishing ; 2004
    In:  Review of Scientific Instruments Vol. 75, No. 6 ( 2004-06-01), p. 2197-2210
    In: Review of Scientific Instruments, AIP Publishing, Vol. 75, No. 6 ( 2004-06-01), p. 2197-2210
    Abstract: An improved type of scanning probe microscope system able to measure soft interactions between an optically trapped probe and local environment is presented. Such a system that traps and tracks thermally fluctuating probes to measure local interactions is called a photonic force microscope (PFM). The instrument can be used to study two-dimensional and three-dimensional surface forces, molecular binding forces, entropic and viscoelastic forces of single molecules, and small variations in particle flow, local diffusion, and viscosities. We introduce and characterize a PFM, and demonstrate its outstanding stability and very low noise. The probe’s position can be measured within a precision of 0.2–0.5 nm in three dimensions at a 1 MHz sampling rate. The trapping system facilitates stable trapping of latex spheres with diameter D=λ0/2 at laser powers as low as 0.6 mW in the focal plane. The ratio between the trapping stiffness and laser power was able to be optimized for various trapping conditions. The measured trap stiffnesses coincide well with the calculated stiffnesses obtained from electromagnetic theory. The design and the features of the novel PFM setup are discussed. The optical and thermodynamical principles as well as signal analysis are explained. Applications for three-dimensional, hard-clipping interaction potentials are shown. The technique discussed in this article and the results presented should be of great interest also to people working in the fields of classical optical tweezing, particle tracking, interferometry, surface inspection, nanotechnology, and scanning probe microscopy.
    Type of Medium: Online Resource
    ISSN: 0034-6748 , 1089-7623
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2004
    detail.hit.zdb_id: 209865-9
    detail.hit.zdb_id: 1472905-2
    SSG: 11
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages