Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    AIP Publishing ; 2006
    In:  The Journal of Chemical Physics Vol. 124, No. 20 ( 2006-05-28)
    In: The Journal of Chemical Physics, AIP Publishing, Vol. 124, No. 20 ( 2006-05-28)
    Abstract: A four-dimensional intermolecular potential-energy surface has been calculated for the HCN–HCl complex, with the use of the coupled cluster method with single and double excitations and noniterative inclusion of triples. Data for more than 13 000 geometries were represented by an angular expansion in terms of coupled spherical harmonics; the dependence of the expansion coefficients on the intermolecular distance R was described by the reproducing kernel Hilbert space method. The global minimum with De=1565cm−1 and Re=7.47a0 has a linear HCN–HCl hydrogen-bonded structure with HCl as the donor. A secondary hydrogen-bonded equilibrium structure with De=564cm−1 and Re=8.21a0 has a T-shaped geometry with HCN as the donor and the acceptor HCl molecule nearly perpendicular to the intermolecular axis. This potential surface was used in a variational approach to compute a series of bound states of the isotopomers HCN–HCl35, DCN–HCl35, and HCN–HCl37 for total angular momentum J=0,1,2 and spectroscopic parities e, f. The results could be analyzed in terms of the approximate quantum numbers of a linear polyatomic molecule with two coupled bend modes, plus a quantum number for the intermolecular stretch vibration. They are in good agreement with the recent high resolution spectrum of Larsen et al. [Phys. Chem. Chem. Phys. 7, 1953 (2005)] in the region of 330cm−1 corresponding to the HCl libration. The (partly anomalous) effects of isotopic substitutions on the properties of the complex were explained with the aid of the calculations.
    Type of Medium: Online Resource
    ISSN: 0021-9606 , 1089-7690
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2006
    detail.hit.zdb_id: 3113-6
    detail.hit.zdb_id: 1473050-9
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages