In:
The Journal of Chemical Physics, AIP Publishing, Vol. 125, No. 6 ( 2006-08-14)
Kurzfassung:
The application of shear flow to entangled polymer melts can strongly modify its rheological and physicochemical behaviors, giving rise to an acceleration of several chemical processes such as diffusion-controlled reactions. In the present work, we investigate the modification of conformational and diffusive properties of an entangled polymer in shear flow by numerical methods. The flow affects both the conformational and diffusive properties of the system, giving rise to a quasinematic ordering of the macromolecules which take prolate spheroid shape with the main axis aligned to the shear direction. The shear flow is found to accelerate the overall diffusion of the chains in all directions at times longer than the polymer relaxation time. The polymer chains display a quite peculiar displacement behavior in direction parallel to the flow. At the same conditions, the linear relation between the diffusion constant in direction perpendicular to the flow and the inverse of the relaxation time, usually adopted in equilibrium regimes, is shown to hold even in the presence of flow.
Materialart:
Online-Ressource
ISSN:
0021-9606
,
1089-7690
Sprache:
Englisch
Verlag:
AIP Publishing
Publikationsdatum:
2006
ZDB Id:
3113-6
ZDB Id:
1473050-9