Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    AIP Publishing ; 2013
    In:  The Journal of Chemical Physics Vol. 138, No. 10 ( 2013-03-14)
    In: The Journal of Chemical Physics, AIP Publishing, Vol. 138, No. 10 ( 2013-03-14)
    Abstract: A new Lattice Boltzmann (LB) approach is introduced to solve for the block copolymer propagator in polymer field theory. This method bridges two desired properties from different numerical techniques, namely: (i) it is robust and stable as the pseudo-spectral method and (ii) it is flexible and allows for grid refinement and arbitrary boundary conditions. While the LB method is not as accurate as the pseudo-spectral method, full self-consistent field theoretic simulations of block copolymers on graphoepitaxial templates yield essentially indistinguishable results from pseudo-spectral calculations. Furthermore, we were able to achieve speedups of ∼100× compared to single CPU core implementations by utilizing graphics processing units. We expect this method to be very useful in multi-scale studies where small length scale details have to be resolved, such as in strongly segregating block copolymer blends or nanoparticle-polymer interfaces.
    Type of Medium: Online Resource
    ISSN: 0021-9606 , 1089-7690
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2013
    detail.hit.zdb_id: 3113-6
    detail.hit.zdb_id: 1473050-9
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages