In:
The Journal of Chemical Physics, AIP Publishing, Vol. 140, No. 18 ( 2014-05-14)
Kurzfassung:
Chirality is one of the most fundamental properties of many physical, chemical, and biological systems. However, the mechanisms underlying the onset and control of chiral symmetry are largely understudied. We investigate possibility of chirality control in a chemical excitable system (the Belousov-Zhabotinsky reaction) by application of a chiral (rotating) electric field using the Oregonator model. We find that unlike previous findings, we can achieve the chirality control not only in the field rotation direction, but also opposite to it, depending on the field rotation frequency. To unravel the mechanism, we further develop a comprehensive theory of frequency synchronization based on the response function approach. We find that this problem can be described by the Adler equation and show phase-locking phenomena, known as the Arnold tongue. Our theoretical predictions are in good quantitative agreement with the numerical simulations and provide a solid basis for chirality control in excitable media.
Materialart:
Online-Ressource
ISSN:
0021-9606
,
1089-7690
Sprache:
Englisch
Verlag:
AIP Publishing
Publikationsdatum:
2014
ZDB Id:
3113-6
ZDB Id:
1473050-9