Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Journal of Applied Physics, AIP Publishing, Vol. 117, No. 8 ( 2015-02-28)
    Abstract: Subject to a mechanical load or a voltage, a membrane of a dielectric elastomer deforms. As for the deformation mode, the dynamic performance and stability are strongly affected by how mechanical forces are applied. In the current study, by using the Euler-Lagrange equation, an analytical model is developed to characterize the dynamic performance of a homogeneously deformed viscoelastic dielectric elastomer under the conditions of equal-biaxial force, uniaxial force, and pure shear state, respectively. Numerical results are shown to describe the electromechanical deformation and stability. It is observed that the resonant frequency (where the amplitude-frequency curve peaks) has dependencies on the deformation mode, the level of mechanical load, and the applied electric field. When a dielectric elastomer membrane is subject to equal-biaxial force or pure shear state, it undergoes a nonlinear quasi-periodic vibration. An aperiodic motion of the dielectric elastomer system is induced by the boundary condition of a uniaxial force.
    Type of Medium: Online Resource
    ISSN: 0021-8979 , 1089-7550
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2015
    detail.hit.zdb_id: 220641-9
    detail.hit.zdb_id: 3112-4
    detail.hit.zdb_id: 1476463-5
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages