In:
Applied Physics Letters, AIP Publishing, Vol. 110, No. 2 ( 2017-01-09)
Abstract:
This paper investigates the application of hafnium oxide (HfO2) thin films to crystalline silicon (c-Si) solar cells. Excellent passivation of both n- and p-type crystalline silicon surfaces has been achieved by the application of thin HfO2 films prepared by atomic layer deposition. Effective surface recombination velocities as low as 3.3 and 9.9 cm s−1 have been recorded with 15 nm thick films on n- and p-type 1 Ω cm c-Si, respectively. The surface passivation by HfO2 is activated at 350 °C by a forming gas anneal. Capacitance voltage measurement shows an interface state density of 3.6 × 1010 cm−2 eV−1 and a positive charge density of 5 × 1011 cm−2 on annealed p-type 1 Ω cm c-Si. X-ray diffraction unveils a positive correlation between surface recombination and crystallinity of the HfO2 and a dependence of the crystallinity on both annealing temperature and film thickness. In summary, HfO2 is demonstrated to be an excellent candidate for surface passivation of crystalline silicon solar cells.
Type of Medium:
Online Resource
ISSN:
0003-6951
,
1077-3118
Language:
English
Publisher:
AIP Publishing
Publication Date:
2017
detail.hit.zdb_id:
211245-0
detail.hit.zdb_id:
1469436-0