Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    AIP Publishing ; 2017
    In:  The Journal of Chemical Physics Vol. 147, No. 6 ( 2017-08-14)
    In: The Journal of Chemical Physics, AIP Publishing, Vol. 147, No. 6 ( 2017-08-14)
    Abstract: Surface freezing is a phenomenon in which crystallization is enhanced at a vapor-liquid interface. In some systems, such as n-alkanes, this enhancement is dramatic and results in the formation of a crystalline layer at the free interface even at temperatures slightly above the equilibrium bulk freezing temperature. There are, however, systems in which the enhancement is purely kinetic and only involves faster nucleation at or near the interface. The first, thermodynamic, type of surface freezing is easier to confirm in experiments, requiring only the verification of the existence of crystalline order at the interface. The second, kinetic, type of surface freezing is far more difficult to prove experimentally. One material that is suspected of undergoing the second type of surface freezing is liquid water. Despite strong indications that the freezing of liquid water is kinetically enhanced at vapor-liquid interfaces, the findings are far from conclusive, and the topic remains controversial. In this perspective, we present a simple thermodynamic framework to understand conceptually and distinguish these two types of surface freezing. We then briefly survey fifteen years of experimental and computational work aimed at elucidating the surface freezing conundrum in water.
    Type of Medium: Online Resource
    ISSN: 0021-9606 , 1089-7690
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2017
    detail.hit.zdb_id: 3113-6
    detail.hit.zdb_id: 1473050-9
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages