Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    AIP Publishing ; 1981
    In:  The Physics of Fluids Vol. 24, No. 2 ( 1981-02-01), p. 339-346
    In: The Physics of Fluids, AIP Publishing, Vol. 24, No. 2 ( 1981-02-01), p. 339-346
    Abstract: Analytical and numerical studies of an end-plugged theta pinch are described. The analytical model treats the ablated plug plasma in the quasi-static limit where radiation losses balance energy flowing from the main plasma. This model is used to calculate the enhancement in energy confinement due to an ablating end plug for various plug species. The numerical model employs a one-dimensional, time-dependent magnetohydro-dynamic code. Results of calculations simulating the Scylla IV-P end-plugged theta pinch experiment are presented. The calculations achieve good agreement with the observed decay time of the energy line density. Moreover, the observed tendency toward longer decay times at lower atomic number is also predicted. However, certain notable discrepancies are found. For Si plugs, the calculations indicate a somewhat longer decay time than observed with SiO2 plugs. In addition, an axial compression wave driven by plug ablation causes the calculated energy line density to rise after 15 to 20 μsec which was not observed in the experiments. This is believed to be a feature of the one radial cell model which forbids axial wave dispersion; such dispersion would tend to mute the appearance of such waves. For fusion reactor scale plasma, the calculations predict that higher atomic number leads to negligible enhancements in confinement time.
    Type of Medium: Online Resource
    ISSN: 0031-9171
    Language: English
    Publisher: AIP Publishing
    Publication Date: 1981
    detail.hit.zdb_id: 1472743-2
    detail.hit.zdb_id: 241528-8
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages