In:
APL Materials, AIP Publishing, Vol. 8, No. 4 ( 2020-04-01)
Abstract:
Metal–Organic Frameworks (MOFs), which are well-known for their highly controllable level of porosity, large specific surface area, and structural diversity, have been regarded as a class of promising materials for gas storage/separation, liquid separation, energy storage, and conversion. Recently, the applications of MOFs in water technology and sustainability have drawn increasing attention in the research community, although they are much under-investigated. For applications in water technologies, a rational integration of MOFs and bulk substrates is a necessary engineering strategy to improve their stability and recyclability and avoid the potential secondary contamination. In this mini overview, MOF-boosted filtration membrane technology is critically looked into and the current state-of-the-art is discussed. We focus on the membrane filtration technology promoted by MOFs for water treatment, with particular emphasis on the permeability-selectivity trade-off and membrane fouling. In this connection, the configuration and fabrication of MOF-boosted membranes are visited, followed by those MOF-mediated membranes, such as high-permeable membranes, adsorptive membranes, antifouling membranes, and catalytic membranes, where the multi-functionalities are among the key characteristics. A summary is made on the controlling features of these MOF-boosted membranes for water and wastewater treatment, together with the particular challenges and future perspectives.
Type of Medium:
Online Resource
ISSN:
2166-532X
Language:
English
Publisher:
AIP Publishing
Publication Date:
2020
detail.hit.zdb_id:
2722985-3