Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    AIP Publishing ; 2020
    In:  Applied Physics Letters Vol. 117, No. 5 ( 2020-08-03)
    In: Applied Physics Letters, AIP Publishing, Vol. 117, No. 5 ( 2020-08-03)
    Abstract: Infrared-active lattice mode properties of melt-grown high-quality single bulk crystals of ZnGa2O4 are investigated by combined spectroscopic ellipsometry and density functional theory computation analysis. The normal spinel structure crystals are measured by spectroscopic ellipsometry at room temperature in the range of 100 cm–1–1200 cm–1. The complex-valued dielectric function is determined from a wavenumber-by-wavenumber approach, which is then analyzed by the four-parameter semi-quantum model dielectric function approach augmented by impurity mode contributions. We determine four infrared-active transverse and longitudinal optical mode pairs, five localized impurity mode pairs, and the high frequency dielectric constant. All four infrared-active transverse and longitudinal optical mode pairs are in excellent agreement with results from our density functional theory computations. With the Lyddane–Sachs–Teller relationship, we determine the static dielectric constant, which agrees well with electrical capacitance measurements performed on similarly grown samples. We also provide calculated parameters for all Raman-active and for all silent modes and, thereby, provide a complete set of all symmetry predicted Brillouin zone center modes.
    Type of Medium: Online Resource
    ISSN: 0003-6951 , 1077-3118
    RVK:
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2020
    detail.hit.zdb_id: 211245-0
    detail.hit.zdb_id: 1469436-0
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages