Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    AIP Publishing ; 2022
    In:  Applied Physics Letters Vol. 121, No. 12 ( 2022-09-19)
    In: Applied Physics Letters, AIP Publishing, Vol. 121, No. 12 ( 2022-09-19)
    Abstract: The impact of Cubic Silicon Carbide (3C-SiC) transition layer on breakdown voltage and frequency performance of GaN high electron mobility transistors is investigated. A combination of distinct material and device characterizations techniques, including Raman spectroscopy, coplanar waveguides, electrical measurements, and Technology Computer-Aided Design (TCAD) simulations, are adopted to inspect the role of the 3C-SiC interlayer. Raman spectra reveal a good quality of the 3C-SiC layer, similar to the mono-crystalline 3C-SiC spectra. A relatively low transmission loss of ∼0.16 dB/mm at 40 GHz is measured for the device with 3C-SiC layer, rather than 2.1 dB/mm for the device without 3C-SiC. In addition, a soft breakdown voltage around 1530 V at 1 μA/mm is achieved, which is three times larger compared with that of the conventional device. The failure mechanism, related to carrier injection at the nucleation layer, is not observed in the structure with the 3C-SiC layer. Instead, TCAD simulations disclose a substantial improvement of the buffer/substrate interface through the suppression of an interface current path.
    Type of Medium: Online Resource
    ISSN: 0003-6951 , 1077-3118
    RVK:
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2022
    detail.hit.zdb_id: 211245-0
    detail.hit.zdb_id: 1469436-0
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages