Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    AIP Publishing ; 2022
    In:  Physics of Fluids Vol. 34, No. 10 ( 2022-10-01)
    In: Physics of Fluids, AIP Publishing, Vol. 34, No. 10 ( 2022-10-01)
    Abstract: A combination of solid and transverse jet obstacles is proposed to trigger flame acceleration and deflagration-to-detonation transition (DDT). A numerical study of this approach is performed by solving the reactive Navier–Stokes equations deploying an adaptive mesh refinement technique. A detailed hydrogen–air reaction mechanism with 12 species and 42 steps is employed. The efficiency and mechanisms of the combined obstacles on the flame acceleration are investigated comprehensively. The effects of multiple jets, jet start time, and jet stagnation pressure on the DDT process are studied. Results show that there is a 22.26% improvement in the DDT run-up time and a 33.36% reduction in the DDT run-up distance for the combined obstacles compared to that having only solid obstacles. The jet acts as an obstruction by producing a suitable blockage ratio and introducing an intense turbulent region due to the Kelvin–Helmholtz instability. This leads to dramatic flame–turbulence interactions, increasing the flame surface area dramatically. The dual jet produces mushroom-like vortices, leading to a significantly stretched flame front and intensive Kelvin–Helmholtz instabilities, and therefore, these features produce a high flame acceleration. As the jet operation time decreases, the jet obstacle almost changes its role from both physical blockage ratio and turbulence and vorticity generator to a physical blockage ratio. There is a moderate jet stagnation pressure that reduces the run-up time to detonation and run-up distance to detonation in the obstacle-laden chamber. While further increasing the jet stagnation pressure, it does not have a positive effect on shortening the detonation transition.
    Type of Medium: Online Resource
    ISSN: 1070-6631 , 1089-7666
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2022
    detail.hit.zdb_id: 1472743-2
    detail.hit.zdb_id: 241528-8
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages