In:
Journal of Applied Physics, AIP Publishing, Vol. 132, No. 19 ( 2022-11-21)
Abstract:
Highly mismatched semiconductor alloys (HMAs) offer unusual combinations of bandgap and lattice constant, which are attractive for myriad applications. Dilute borides, such as BGa(In)As, are typically assumed to be HMAs. BGa(In)As can be grown in higher alloy compositions than Ga(In)NAs with comparable bandgaps, potentially enabling routes to lattice-matched telecom lasers on Si or GaAs. However, BGa(In)As remains relatively unexplored, especially with large fractions of indium. Density functional theory with HSE06 hybrid functionals was employed to study BGaInAs with 4%–44% In and 0%–11% B, including atomic rearrangement effects. All compositions showed a direct bandgap, and the character of the lowest conduction band was nearly unperturbed with the addition of B. Surprisingly, although the bandgap remained almost constant and the lattice constant followed Vegard's law with the addition of boron, the electron effective mass increased. The increase in electron effective mass was higher than in conventional alloys, though smaller than those characteristics of HMAs. This illustrates a particularly striking finding, specifically that the compositional space of BGa(In)As appears to span conventional alloy and HMA behavior, so it is not well-described by either limit. For example, adding B to GaAs introduces additional states within the conduction band, but further addition of In removes them, regardless of the atomic arrangement.
Type of Medium:
Online Resource
ISSN:
0021-8979
,
1089-7550
Language:
English
Publisher:
AIP Publishing
Publication Date:
2022
detail.hit.zdb_id:
220641-9
detail.hit.zdb_id:
3112-4
detail.hit.zdb_id:
1476463-5