Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    CSIRO Publishing ; 2013
    In:  Functional Plant Biology Vol. 40, No. 3 ( 2013), p. 213-
    In: Functional Plant Biology, CSIRO Publishing, Vol. 40, No. 3 ( 2013), p. 213-
    Abstract: Sap-flow measurements have become increasingly important in plant science. Since the early experiments with dyes, many methods have been developed. Most of these are based on the application of heat in the sapwood which is transported by the moving sap. By measuring changes in the temperature field around the heater, sap flow can be derived. Although these methods all have the same basis, their working principles vary widely. A first distinction can be made between those measuring the sap-flow rate (g h–1) such as the stem heat balance and trunk sector heat balance method and those measuring sap-flux density (cm3 cm–2 h–1). Within the latter, the thermal dissipation and heat field deformation methods are based on continuous heating, whereas the compensation heat pulse velocity, Tmax, heat ratio, calibrated average gradient and Sapflow+ methods are based on the application of heat pulses. Each of these methods has its advantages and limitations. Although the sap-flow rate methods have been adequately described in previous reviews, recent developments in sap-flux density methods prompted a synthesis of the existing but scattered literature. This paper reviews sap-flux density methods to enable users to make a well founded choice, whether for practical applications or fundamental research questions, and to encourage further improvement in sap-flux density measurement techniques.
    Type of Medium: Online Resource
    ISSN: 1445-4408
    Language: English
    Publisher: CSIRO Publishing
    Publication Date: 2013
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages