Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    CSIRO Publishing ; 2001
    In:  Functional Plant Biology Vol. 28, No. 2 ( 2001), p. 87-
    In: Functional Plant Biology, CSIRO Publishing, Vol. 28, No. 2 ( 2001), p. 87-
    Abstract: Membrane transport activity associated with growth and nutritional status of a marine microheterotroph Thraustochytrium sp. was studied using non-invasive ion-selective slowly vibrating microelectrodes (the MIFE technique). Net fluxes of H + , Ca 2+ and Na + underwent regular changes as the cell progressed from the zoospore to sporangium stages of development. The most pronounced change was a decrease in the net H + influx, which we suggest could be associated with the changes in cytoskeletal organization required for cell cleavage and zoospore release. As cell development progressed from the zoospore stage towards maturity, non-damping endogenous ultradian oscillations (period range of several minutes) became evident. At the sporangium stage, as many as 85% of cells possessed oscillatory membrane transport activity. It is suggested that ultradian ion flux oscillations in Thraustochytrium sp. may be causally linked with cell developmental processes. Discrete Fourier transform and cross-correlation analysis revealed a close association between oscillatory patterns of H + and Na + fluxes. The possibility that these oscillations result from the rhythmical activity of a Na + /H + co-transporter located at the plasma membrane of Thraustochytrium sp. is considered. Oscillations in net Ca 2+ flux were apparently not linked to those in H+ and Na + , and are believed to be due to some other physiological processes. Periods of net H + and Na + flux oscillations were strongly dependent on the external Na + concentrations in the bathing medium. As sodiu m is considered to be an essential element in Thraustochytrium sp., it is suggested that the functional role of such ultradian oscillations may be their involvement in the frequency-encoding mechanism that provides developing cells with information about environment, and nutritional status in particular.
    Type of Medium: Online Resource
    ISSN: 1445-4408
    Language: English
    Publisher: CSIRO Publishing
    Publication Date: 2001
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages