Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2004
    In:  Proceedings of the National Academy of Sciences Vol. 101, No. 50 ( 2004-12-14), p. 17340-17344
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 101, No. 50 ( 2004-12-14), p. 17340-17344
    Abstract: In this article we present experimental results demonstrating an approach to controlling the size and spatial patterning of defect domains in a smectic liquid crystal (LC) by geometric confinement in surface-modified microchannels. By confining the LC 4′-octyl-4-cyanobiphenyl in μm-sized rectangular channels with controlled surface polarity, we were able to generate defect domains that are not only nearly uniform in size but also arranged in quasi-2D ordered patterns. Atomic force microscopy measurements revealed that the defects have a toroidal topology, which we argue is dictated by the boundary conditions imposed by the walls of the microchannel. We show that the defects can be considered to be colloidal objects, which interact with each other to form ordered patterns. This method opens the possibility for exploiting the unique optical and rheological properties associated with LC defects to making new materials. For example, the control of the shape, size, and spatial arrangement of the defects at the mesoscale suggests applications in patterning, templating, and when extended to lyotropic LCs, a process leading to uniform-sized spherical particles for chemical encapsulation and delivery.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2004
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages