In:
Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 103, No. 40 ( 2006-10-03), p. 14767-14772
Abstract:
Studies on hypoxia-sensitive pathways have revealed a series of Fe(II)-dependent dioxygenases that regulate hypoxia-inducible factor (HIF) by prolyl and asparaginyl hydroxylation. The recognition of these unprecedented signaling processes has led to a search for other substrates of the HIF hydroxylases. Here we show that the human HIF asparaginyl hydroxylase, factor inhibiting HIF (FIH), also efficiently hydroxylates specific asparaginyl (Asn)-residues within proteins of the IκB family. After the identification of a series of ankyrin repeat domain (ARD)-containing proteins in a screen for proteins interacting with FIH, the ARDs of p105 ( NFKB1 ) and IκBα were shown to be efficiently hydroxylated by FIH at specific Asn residues in the hairpin loops linking particular ankyrin repeats. The target Asn residue is highly conserved as part of the ankyrin consensus, and peptides derived from a diverse range of ARD-containing proteins supported FIH enzyme activity. These findings demonstrate that this type of protein hydroxylation is not restricted to HIF and strongly suggest that FIH-dependent ARD hydroxylation is a common occurrence, potentially providing an oxygen-sensitive signal to a diverse range of processes.
Type of Medium:
Online Resource
ISSN:
0027-8424
,
1091-6490
DOI:
10.1073/pnas.0606877103
Language:
English
Publisher:
Proceedings of the National Academy of Sciences
Publication Date:
2006
detail.hit.zdb_id:
209104-5
detail.hit.zdb_id:
1461794-8
SSG:
11
SSG:
12