In:
Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 99, No. 10 ( 2002-05-14), p. 7136-7141
Abstract:
Galanin is a neuropeptide with a wide variety of biological functions, including that of a strong endogenous anticonvulsant. No nonpeptide ligands, capable of activating galanin receptors, are available today. Based on known pharmacophores of galanin, a combinatorial library was designed, synthesized, and screened at the rat hippocampal galanin receptor. A low molecular weight galanin receptor agonist, 7-((9-fluorenylmethoxycarbonyl)cyclohexylalanyllysyl)amino-4-methylcoumarin (galnon) was found to displace 125 I-galanin with micromolar affinity at Bowes cellular and rat hippocampal membranes. Autoradiographic binding assay on rat spinal cord sections confirmed the ability of galnon to displace 125 I-galanin from its binding sites. Galnon inhibited adenylate cyclase activity, suggesting an agonist action at galanin receptors. When injected i.p. galnon reduced the severity and increased the latency of pentylenetetrazole-induced seizures in mice and reversed the proconvulsant effects of the galanin receptor antagonist M35, injected into a lateral ventricle. Intrahippocampal injection of galnon also shortened the duration of self-sustaining status epilepticus in rats, confirming its agonist properties in vivo . Pretreatment of rats with antisense peptide nucleic acid targeted to galanin receptor type 1 mRNA abolished the effect of galnon, suggesting mediation of its anticonvulsant properties through this receptor subtype. These findings introduce a systemically active nonpeptide galanin agonist anticonvulsant.
Type of Medium:
Online Resource
ISSN:
0027-8424
,
1091-6490
DOI:
10.1073/pnas.102163499
Language:
English
Publisher:
Proceedings of the National Academy of Sciences
Publication Date:
2002
detail.hit.zdb_id:
209104-5
detail.hit.zdb_id:
1461794-8
SSG:
11
SSG:
12