In:
Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 109, No. 26 ( 2012-06-26), p. 10298-10303
Abstract:
The conversion of recalcitrant plant-derived cellulosic biomass into biofuels is dependent on highly efficient cellulase systems that produce near-quantitative levels of soluble saccharides. Similar to other fungal and bacterial cellulase systems, the multienzyme cellulosome system of the anaerobic, cellulolytic bacterium Clostridium thermocellum is strongly inhibited by the major end product cellobiose. Cellobiose-induced inhibition can be relieved via its cleavage to noninhibitory glucose by the addition of exogenous noncellulosomal enzyme β-glucosidase; however, because the cellulosome is adsorbed to the insoluble substrate only a fraction of β-glucosidase would be available to the cellulosome. Towards this end, we designed a chimeric cohesin-fused β-glucosidase (BglA-CohII) that binds directly to the cellulosome through an unoccupied dockerin module of its major scaffoldin subunit. The β-glucosidase activity is thus focused at the immediate site of cellobiose production by the cellulosomal enzymes. BglA-CohII was shown to retain cellobiase activity and was readily incorporated into the native cellulosome complex. Surprisingly, it was found that the native C. thermocellum cellulosome exists as a homooligomer and the high-affinity interaction of BglA-CohII with the scaffoldin moiety appears to dissociate the oligomeric state of the cellulosome. Complexation of the cellulosome and BglA-CohII resulted in higher overall degradation of microcrystalline cellulose and pretreated switchgrass compared to the native cellulosome alone or in combination with wild-type BglA in solution. These results demonstrate the effect of enzyme targeting and its potential for enhanced degradation of cellulosic biomass.
Type of Medium:
Online Resource
ISSN:
0027-8424
,
1091-6490
DOI:
10.1073/pnas.1202747109
Language:
English
Publisher:
Proceedings of the National Academy of Sciences
Publication Date:
2012
detail.hit.zdb_id:
209104-5
detail.hit.zdb_id:
1461794-8
SSG:
11
SSG:
12