In:
Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 110, No. 5 ( 2013-01-29)
Kurzfassung:
Seeds are complex structures that consist of the embryo, endosperm, and seed-coat regions that are of different ontogenetic origins, and each region can be further divided into morphologically distinct subregions. Despite the importance of seeds for food, fiber, and fuel globally, little is known of the cellular processes that characterize each subregion or how these processes are integrated to permit the coordinated development of the seed. We profiled gene activity genome-wide in every organ, tissue, and cell type of Arabidopsis seeds from fertilization through maturity. The resulting mRNA datasets offer the most comprehensive description of gene activity in seeds with high spatial and temporal resolution, providing unique insights into the function of understudied seed regions. Global comparisons of mRNA populations reveal unexpected overlaps in the functional identities of seed subregions. Analyses of coexpressed gene sets suggest that processes that regulate seed size and filling are coordinated across several subregions. Predictions of gene regulatory networks based on the association of transcription factors with enriched DNA sequence motifs upstream of coexpressed genes identify regulators of seed development. These studies emphasize the utility of these datasets as an essential resource for the study of seed biology.
Materialart:
Online-Ressource
ISSN:
0027-8424
,
1091-6490
DOI:
10.1073/pnas.1222061110
Sprache:
Englisch
Verlag:
Proceedings of the National Academy of Sciences
Publikationsdatum:
2013
ZDB Id:
209104-5
ZDB Id:
1461794-8
SSG:
11
SSG:
12