In:
Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 110, No. 45 ( 2013-11-05), p. 18098-18103
Kurzfassung:
The coupling of subseafloor microbial life to oceanographic and atmospheric conditions is poorly understood. We examined diagenetic imprints and lipid biomarkers of past subseafloor microbial activity to evaluate its response to glacial-interglacial cycles in a sedimentary section drilled on the Peruvian shelf (Ocean Drilling Program Leg 201, Site 1229). Multiple and distinct layers of diagenetic barite and dolomite, i.e., minerals that typically form at the sulfate−methane transition (SMT), occur at much shallower burial depth than the present SMT around 30 meters below seafloor. These shallow layers co-occur with peaks of 13 C-depleted archaeol, a molecular fossil of anaerobic methane-oxidizing Archaea. Present-day, non-steady state distributions of dissolved sulfate also suggest that the SMT is highly sensitive to variations in organic carbon flux to the surface shelf sediments that may lead to shoaling of the SMT. Reaction-transport modeling substantiates our hypothesis that shallow SMTs occur in response to cyclic sediment deposition with a high organic carbon flux during interglacials and a low organic carbon flux during glacial stages. Long diffusion distances expectedly dampen the response of deeply buried microbial communities to changes in sediment deposition and other oceanographic drivers over relatively short geological time scales, e.g., glacial-interglacial periods. However, our study demonstrates how dynamically sediment biogeochemistry of the Peru Margin has responded to glacial-interglacial change and how these changes are now preserved in the geological record. Such changes in subsurface biogeochemical zonation need to be taken into account to assess the role of the subseafloor biosphere in global element and redox cycling.
Materialart:
Online-Ressource
ISSN:
0027-8424
,
1091-6490
DOI:
10.1073/pnas.1305981110
Sprache:
Englisch
Verlag:
Proceedings of the National Academy of Sciences
Publikationsdatum:
2013
ZDB Id:
209104-5
ZDB Id:
1461794-8
SSG:
11
SSG:
12