Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2014
    In:  Proceedings of the National Academy of Sciences Vol. 111, No. 45 ( 2014-11-11), p. 16130-16135
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 111, No. 45 ( 2014-11-11), p. 16130-16135
    Abstract: Genetic evidence suggests cell-type–specific functions for certain nucleoporins, and gene expression profiling has revealed that nucleoporin p62 (NUP62) transcripts are decreased in the prefrontal cortex of major depressives. Chronic stress, which can precipitate depression, induces changes in the architecture and plasticity of apical dendrites that are particularly evident in the CA3 region of the hippocampus. Genetically targeted translating ribosome affinity purification revealed a selective reduction in translated Nup62 transcripts in CA3 of chronically stressed mice, and the Nup62 protein content of nuclei extracted from whole hippocampus was found to be decreased in chronically stressed rats. In cultured cells, phosphorylation of a FAK/proline-rich tyrosine kinase 2 (PYK2) consensus site in the alpha-helical domain of NUP62 (human Y422) is shown to be associated with shedding of NUP62 from the nuclear pore complex (NPC) and/or retention of NUP62 in the cytoplasm. Increased levels of phospho-Y425 Nup62 were observed in cytoplasmic fractions of hippocampi from chronically stressed rats, and immunofluorescence microscopy revealed redistribution of activated Pyk2 to the perinuclear region of stressed pyramidal neurons. Depletion of Nup62 from cultured embryonic day 18 rat hippocampal and cortical neurons resulted in simplification and retraction of dendritic arbors, without disruption of axon initial segment integrity. Thus, at least two types of mechanisms—one affecting expression and the other association with the NPC—could contribute to loss of NUP62 from CA3 pyramidal neurons during chronic stress. Their combined actions may account for the enhanced responsiveness of CA3 apical dendrites to chronic stress and may either be pathogenic or serve to protect CA3 neurons from permanent damage.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2014
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages